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J. Phys. A: Math. Gen. 15 (1982) 627-635. Printed in Great Britain 

Higher-rank representations for zero-spin field theories 

w cox 
Department of Mathematics, University of Aston in Birmingham, Gosta Green, 
Birmingham B4 7ET, England 

Received 10 June 1981, in final form 6 August 1981 

Abstract. Field theories describing particles with zero spin, but utilising higher-rank 
Lorentz representations than usual, are considered. Of the three new first-order formula- 
tions given, two have consistent and causal minimal couplings. 

1. Introduction 

Recently, because of possible applications in supergravity, there has been some interest 
in theories of a given spin which involve higher-rank tensors or spinors than would be 
usual for that spin (Duff and Van Niewenhuizen 1980, Deser and Witten 1981, Siege1 
1981, Deser etal 1980). Most of this work relates to gauge theories, in which the gauge 
invariance is used to cut out the unwanted higher spins-contrary to the usual usage in 
removing lower-spin states. However, the current interest reminds us that little work 
has been done on massive theories of this type. Almost invariably in massive field 
theories one tends to take the minimum-rank tensor/spinor field which contains the 
required physical spin. Deser and co-workers (Deser and Witten 1981, Deser et a1 
1980) have considered the use of an antisymmetric second-rank tensor to describe a 
spin-zero field and found that in the massive theory it appears to be impossible to 
covariantly ensure non-trivial dynamics. The purpose of this paper is to show how a 
massive spin-zero field may be described by a Lagrangian using higher-rank tensors, 
either by introducing extra auxiliary tensor fields or by doubling up on say the vector 
auxiliary field. The behaviour of the theories on minimal coupling to the electromag- 
netic field is discussed. When higher-rank representations are present in a unique 
mass-spin theory one usually encounters various interaction difficulties such as loss of 
constraints or acausality (Velo and Zwanzinger 1969a, b, Mathews etal 1980), and we 
study this problem for the new theories obtained. 

2. Lagrangians using higher-rank representations 

For definiteness, we consider Lagrangians and field equations which are at most first 
order in derivatives. Any higher-order system can be reduced to first order by 
introducing auxiliary fields and constraints. In this process higher-rank tensors are 
automatically generated-one vector index for each derivative order we reduce by. Of 
course, this is not in general what we mean by using higher-rank tensors to represent 
lower spin. To be specific about what constitutes such a theory we consider the Lorentz 
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irreps which are carried by the field variable 4 in the typical first-order system 

where L, are square matrices and ,y is a non-zero scalar matrix. 
The theory of such systems is well known (Gel’fand et a1 1963). All the physical 

content of the free field is contained in the structure of the matrix Lo. Choosing a 
representation for $ in which all components corresponding to the same spin are 
collected together, Lo assumes a block diagonal form, with the ‘s blocks’ on the diagonal 
determining the possible mass-spin states of the field. A non-zero eigenvalue A of an s 
block corresponds to a spin-s state of the field with mass proportional to x/A. The zero 
eigenvalues of the s blocks correspond to constraints. 

If we require a theory of a field with unique spin s = j ,  the j block must have a 
non-zero eigenvalue, while all other blocks must be nilpotent. For a unique mass 
particle-antiparticle spin-j pair the j block must have eigenvalues *l, and the remain- 
ing s blocks must be nilpotent. Given the (reducible) Lorentz representation carried by 
4, and the mass-spin states required, we can write down the most general possible Lo 
consistent with covariance, parity invariance and Lagrangian origin and then study the s 
blocks to see how, if possible, the required mass-spin spectra may be obtained. This 
s-block analysis provides a systematic way of determining which field representations 
and which equations can yield theories of fields with specified mass and spin. Graphical 
methods have been developed to assist in this analysis (Cox 1974a, b, c, 1978, 1981, 
1982). 

Normally, if one wants say a unique mass-spin theory of spin j one chooses the 
representation carried by (I to contain at most up to spin j (except in the case of spin 
zero, where we take up to spin one), and in such a way that the j block has eigenvalues 
*1 and zero, and all lower-spin blocks are nilpotent. This would correspond in the 
usual field theory approach to taking tensors of just sufficient rank to accomodate the 
required physical spin. For the exceptional case of the first-order formulation of a 
spin-zero field theory this requires taking at most a vector and a scalar field in the 
Lagrangian. In this case the spin-one block is zero. 

In the theories we now have in mind the j + 1 block, and possibly higher, would be 
allowed to be non-zero but nilpotent, as well as those below spin j .  This is not 
necessarily equivalent to using higher-derivative Lagrangians, because, as Deser et a1 
(1980) observe, the physical content of a theory is not always left unkhanged by field 
substitutions involving derivatives. There is no compelling reason why such theories 
using higher-rank representations than necessary should show improved behaviour, say 
with respect to interactions, but it is interesting that so far the only theory with a 
consistent, causal minimal coupling to the electromagnetic field with LO non-diagonal- 
isable is precisely such a theory, albeit only spin one (Shamaly and Capri 1973). 

The sort of s-block analysis described above tells us what Lorentz irreps are involved 
in $ and how these are linked by derivatives in equation (2.1) to yield the desired 
mass-spin spectra. For interaction analysis however, it is more convenient to have the 
equations in tensor or tensor-spinor form. This can be achieved by introducing 
appropriate tensors/spinors to represent the various Lorentz irreps and linking these by 
derivatives according to the structure of the graph representing LO (Cox 1982). In the 
present analysis the graphs depicted may be simply interpreted in the folIoWing way. 
The graph as a whole represents the full set of field equations. The vertices denote 
irreps of the proper Lorentz group, represented in turn by some appropriate irreducible 
tensor field. The edge between two vertices represents differentiation. If a vertex A is 
connected by an edge to vertex B then in the field equation for B the contribution of 
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field A is got by differentiating the field A and multiplying by an arbitrary complex 
parameter, These parameters are subject to certain relations by the requirements of 
space reflection covariance, hermiticity etc. With the use of certain conventions the s 
blocks of a theory correspond to particular subgraphs of the graph, as described in Cox 
(1974a, b, c, 1978). Information on the possible mass-spin spectra of a theory may be 
gleaned by visual inspection of these subgraphs. In particular the very form of an 
s-block graph may preclude the nilpotency of that s block. While such graphical 
techniques are useful in deciding what structure of equations for a given combination of 
irreps will yield the required mass-spin spectra, they are not necessary for the 
subsequent analysis of these equations, which is the object of this paper. Further details 
of the graphical methods can be found in the references. 

3. Alternative forms for massive spin-zero theories 

In graphical notation (Cox 1974a, b, c) the usual first-order formulation of spin-zero 
theory of Duffin and Kemmer (Duffin 1938, Kemmer 1939) corresponds to the graph 

The 0 block is 2 X 2 and chosen to have eigenvalues f 1, while the 1 block is zero. The 
theory of Deser and Witten (1981) which uses just a vector A, and antisymmetric 
tensor FWy = a,A, -&A, corresponds to the graph 

1 
9 1001 

so far as the kinematic part of the Lagrangian is concerned, but except in the case a = 0 
the mass terms in the Lagrangian cannot be put into the form (2.1), but correspond to 
the interesting but little studied case where ,y is a singular matrix. In the case a # 0, the 
only possibilities for a spin-zero theory lead in fact to trivial dynamics. In the cy = 0 case 
the only possible Lagrangian of form (2.1) is parity invariant, and it is then easy to see 
from the s blocks that the graph -I- cannot describe a single spin-zero state. The 
0 block I can be made massive, but the 1 block .-. cannot be made nilpotent. In 
fact the graph describes a theory with massive spin-zero and spin-one states. 
These contribute to the energy with different signs and since neither s block can be 
made nilpotent one or the other must be made zero, resulting in either a graph 1, the 
spin-zero theory, or a graph -, the spin-one theory. 

To obtain a modification of the simple massive spin-zero theory, we need to 
introduce other higher-rank tensors, at the same time ensuring that we still have a 
nilpotent 1 block. One way to do this is by introducing the representation 9(ll) and 
using the graph 

O(111 

E b ( O l 1  i- W O 1  

a1001 



630 w cox 

The s-block analysis confirms that such a theory can describe a unique spin-zero state, 
and that up to rescaling of the fie& the theory is unique. 

To obtain this theory in tensor form we represent 9(ll) by a symmetric traceless 
tensor S,, and 9(101)=9a(l0)@9(01) by an antisymmetric tensor A,,. A, and q5 
represent 9(*$) and 9(00) respectively. The above graph then represents the 
equations 

where ah are independent constants, and if parity invariance and Lagrangian origin 
are assumed a‘i = *ai (Cox 1974a, b, c) although we shall not yet make either of these 
assumptions . 

Eliminating S,, and A,, from (3.2) 

A, =(txi-xz)a2A, + ( b i + ~ z + ~ g ) a , ( 4 / a 3 )  

where x i  =&ai. The other apparent spin-one modes in the theory, a”S,, and a”A,, 
depend only on A, as do A,, and S,,. All physical spin-one modes can therefore be 
eliminated by ensuring that A, does not propagate, i.e. by taking 

x i =  2x2 (3.5) 
then 

So A, really conceals a physical spin-zero field. Further, from (3.4) 

a * A =a; ’@ =ai ’ (&z  +x3)a24  

so q5 propagates according to 

So we simply have to take 

for a propagating physical spin-zero massive state. 
Thus, the system (3.1)-(3.4), with (3.3, (3.8) provides us with a massive free field 

theory of spin zero using higher than necessary Lmentz representations. However, we 
shall see in the next section that in the case of minimal coupling to an external 
electromagnetic field this theory is inconsistent. The problem lies in the way the 
contributions of A, to S,, and A,, combine to eliminate the spin-one state. However, 
if we try to eliminate either of these then the 1 block cannot be made nilpotent. For 
example, eliminating A,, gives the graph 1, the 1 block of which, I ,  cannot be 
made nilpotent. However, by doubling up the 9(; 1) representation we can achieve the 
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required mass-spin spectra with the graph 

91111 
U 

9 (001  

The s-block analysis confirms that the parameters in this theory can be chosen to yield a 
nilpotent 1 block and a 0 block with two non-zero eigenvalues *l. In tensor form it 
corresponds to the equations 

(3.9) 

(3.10) 

B, = b;a’s,, + b,a,4 

4 =&a * A+&a * B. 

(3.11) 

(3.12) 

Eliminating S,, and combining (3.10), (3.11) yields ( y i  = 6b i )  

b iA ,  + bzB, = % y i  + yz)a2(biAw + bzB,) 

+ i ( y i  + y 2 ) a c [ a  * ( b i A  +b;zB)I+(bib3+bzb,)a,4 

and to avoid a propagating spin-one mode we must take 

Y l +  Y 2  = 0. 
Then 

(3.13) 

biA,  + bzB, = (bib3 + b2b4)aW4 (3.14) 

and this in (3.10), (3.11) expresses both A,, B, (and hence S,,) entirely in terms of 4, 
the spin-zero field. 

For the spin-zero modes in the theory, (3.9)-(3.12) yield 

(3.15) 

(3.16) 

a . B = b;aClaws,, + b4a24 (3.17) 

4 = b ; a * A + & a *  B. (3.18) 

Eliminating a”a“S,,,, a A and a B yields 

4 =i(b;b;+b;g4)(blb3+ b2b4)a44 +(y3+y4)a24 (3.19) 

on using (3.13). For a unique massive spin-zero mode we must therefore also insist on 

bib3 + bzb4=O or b;b; + &64 = 0 (3.20) 
while 

Y 3  -t Y 4  < 0. (3.21) 

So the system (3.9)-(3.12), with the &, bi solutions of (3.13), (3.20), (3.21), which 
they clearly can be, will give a theory of a massive spin-zero field. Note that if we take 
bib3+ b2b4 = 0, then (3.14) reduces to b lA ,  + bzB, = 0, which in (3.9) yields S,, = 0 as 
a consequence of the field equations. 
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By doubling up the a($$) representation we can also obtain a massive spin-zero 
theory using the antisymmetric tensor via the graph 

1 IO01 

Again, a simple s-block analysis allows a nilpotent 1 block and massive 0 block. In 
tensor form the equations are 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

A,, = cl(a,Av - a ~ , )  + c Z ( a s Y  - aB,) 
A, = c‘la”A,, + c4a,4 
B, = c‘2avA,, + c3a,4 
4 = &a’”A, + c3aW~,  

ci, ei again some constants, with no a priori relation yet assumed between ci and &. 
Eliminating A,, and combining (3.23) and (3.24) yields the result (zi  = tici) 

C ~ A ,  + C * B ,  = (zl + z2)a,[a - ( C ~ A  + C ~ B ) I  

- (zl + z2)a2(C1A, + c ~ B , )  + ( ~ 4 f  c2c3)a,4. 

To avoid a propagating spin-one mode we must choose 

2 1  + 2 2  = 0 

ciA, +c2B, = ( C I C ~ + C Z C ~ ) ~ ~ ~  

and then 

and (3.22) reduces to 

(3.26) 

(3.27) 

A,, = 0 

and (3.23), (3.24) to 

A,  = ~ 4 3 ~ 4  

a, a”A,, = o 

4 = ( 2 3  + t4)a24. 

B, = c3a,4 

a .  A = c4a24 
again, as consequences of the field equations. For the spin-zero modes we have 

a B = c3a2# 
and 

So we have a free field theory using the second-rank antisymmetric tensor A,, which 
describes a propagating massive spin-zero field. To pay for this we have had to 
introduce a second vector field in the constraints. However, we will find, as in the case 
of the graph , that there is a pay-off in interaction consistency. 4 
4. Minimalcmpling 

The simplest spin-zero first-order theory-the five-dimensional Duffin-Kemmer 
theory-suffers no problems such as loss of constraints or acausality under minimal 
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coupling. This is essentially because the Lo matrix is in this case diagonalisable (Amar 
and Dozzio 1972, Velo and Zwanzinger 1971). It is clear that for our theories using 
higher-rank representations the Lo matrix cannot be diagonalisable, since the 1 block 
must be nilpotent but non-zero, leading to a nilpotency index greater than one (Cox 
1981). Usually such theories suffer various types of problems such as lack of constraints 
or acausality on minimal coupling (Velo and Zwanzinger 1969a, b, 1971, Mathews et a1 
1980), and we therefore need to examine this question for our theories. At present 
there are only a few theories known with non-diagonalisable Lo which have consistent 
and causal minimal couplings (Shamaly and Capri 1973, Khalil 1977). In this section 
we add two more such theories to the list. 

For the + theory the equations (3.1)-(3.4) become on minimal coupling, 
a, + T, = a, - ie&, 4, the electromagnetic potential: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

1 s,, = bl(.rr,A, +TA, -zg,,.rr * A )  
A, = 61~uS,y  + 6 z ~ ” A , ,  + a3.rr,4 
A,, = aZ(.rr,A, - .rrA,) 
4 = a ’ 3 T  * A. 

A, = a;’($x2-x3)T,4 +2x2Fu,A, 

If we now try to eliminate S,, and A,, as before, we obtain, using (3.5) 

where 

F’, = [T,, T,]. 

In the free field case this corresponds to the constraint (3.6), expressing A, entirely in 
terms of the spin-zero field. However, in a non-zero electromagnetic field we obtain 

(4.5) (a”, -2x2F”,)AU = a;’ ( $ x 2 + x 3 ) ~ , ~ .  

Now if x2 is real, as it is for systems derivable from a real non-degenerate parity 
invariant Lagrangian, then there exist Lorentz frames in which S”, - 2x2FY, is singular, 
and so we cannot covariantly solve the constraint (4.5) for A, in the presence of a 
non-zero field. Thus, in this case the constraint structure is changed by the dynamics 
and the interactions of the theory are inconsistent. The difficulty is that the free field 
requirements on xi, x2 (i.e. (3.5)) preclude the elimination of the troublesome F‘,A,, 
term in the interaction case. This difficulty does not arise in the other two theories 
considered in § 3. 

Thus, consider the 4 theory. Equations (3.9)-(3.12) become 

S,, = $bi{~,A,)sT +&z{T,B,)sr (4.6) 
A, = b ; ~ ” S ~ y  + b 3 ~ @ 4  

B, = &T”S,, + 6 4 ~ ~ 4  

4 = & I T  * A + &T * B. 

(4.7) 

(4.8) 

(4.9) 
With (3.13) we still obtain the direct generalisation of (3.14) 

blA, + b2B, = (bib3 + bzb4)~,4. (4.10) 

Back substituting into (4.6H4.8) gives S,,, A,, B, as functions of q5 only, as before. 
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Also, for the spin-zero modes we have 

(4.13) 

(4.14) 

Substituting (4.12), (4.13) into (4.14) gives 

4 = (b;b; + b;64)rwrysfi, + ( y 3  f y4)T24. (4.15) 

On the other hand, substituting (4.7), (4.8) in (4.11) we get, using (3.13) 

I T ~ ~ ~ S , ,  = (bib3 + b2b4)#rV{n;r&}s~.  (4.16) 

Since from (3.20), either 6163 + b2b4 or 616; +&& must be zero (4.15) and (4.16) must 
reduce to 

(4.17) # = ( Y 3  + Y4).rr2# 

so that q5 propagates causally and consistently. 
Turning now to the third theory equations (3.22)-(3.25) become 

A,, = c i ( ~ , A ,  - TA,) + ~ 2 ( r , B ,  - ~ 3 , )  (4.18) 

A,  E~T”A,, + ~ 4 7 ~ ~ 4  (4.19) 

(4.20) 

(4.21) 

Just as in the free case, with z1 + z2 = 0 we obtain 

C I A ,  + c2B, = ( ~ 1 ~ 4  + c2c3)ww~ (4.22) 

whence A,, B,, A,, are entirely expressible in terms of q5, and A,, vanishes in the free 
field limit, consistently with the constraint (3.28). 

For the spin-zero modes we have 

T * A = $tlF’LVA,, + c4r2q5 

T . B =$E2FC””A,, +c3r2q5 

where F,” = [d‘, v’] ,  so 

q5 = + ( E l &  + E&)FLLvA,, + ( 2 3  + Z 4 ) 7 r 2 ~ .  

Also, by substituting A,, B, into A,, and using z1 + z2 = 0 we obtain 

A,, = ( ~ 1 ~ 4  + c ~ c ~ F , + # J  
so 

T~IT”A, , ,  = 5F 1 ,U A,, = S ( C ~ C ~ + C ~ C ~ ) F ~ ~ # .  

Thus the equation for q5 becomes 

q5 = $ ( ~ 1 ~ 4  + C Z C ~ ) ( E I E ~  + E2E3)F2i# + ( 2 3  + 2 4 ) r 2 # .  (4.23) 

In this case we have a choice of theories depending on whether or not we assume 

c1c4 + c2c3 = 0 or + ?2?3 = 0 (4.24) 
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neither of which are required by the free field theory. If we do not assume either of 
these, then the minimally coupled first-order theory is equivalent to a spin-zero theory 
with non-minimal coupling, although q5 still propagates consistently and causally. 

5. Conclusion 

We have obtained a number of alternative first-order spin-zero massive field theories 
involving higher representations of the Lorentz group than usual. One of these, that 
using an antisymmetric tensor, two vector fields and one scalar, appears to satisfy the 
requirements of Deser and Witten (1981), and furthermore is consistent under minimal 
coupling to the electromagnetic field. 

The theories illustrate a number of interesting points relating to the high-spin 
interaction problem, even though they only describe zero spin. First of all, as the + 
theory shows, low spin is no guarantee of consistent minimal coupling-if higher-rank 
representations are present and the constraints are sufficiently awkward then problems 
can arise even for spin zero. The other two theories on the other hand illustrate again 
(Shamaly and Capri 1973, Khalil 1977) the fact that theories with non-diagonalisable 
Lo need not be inconsistent. The +theory is particularly interesting because by 
inequivalent choices of the parameters to satisfy free field requirements we can obtain 
theories behaving differently on minimal coupling. 

In these examples the use of repeated irreps provided a by-pass for the interaction 
difficulties, and perhaps similar possibilities may exist for higher spin. 
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